			I	Maywood, Los Angeles Cou	inty, California			
	Ноте:	₹ Ex. 6 - Personal Privacy	3 Ex. 6 - Personal Privacy	Ex. 6 - Personal Privacy				
	Field Sample ID:	MWF-METALS-011	MWF-METALS-012	MWF-METALS-013	MWF-METALS-014	MWF-METALS-015	MWF-METALS-016	MWF-METALS-017
	Sample Date:	6/16/2016	6/16/2016	6/16/2016	6/16/2016	6/16/2016	6/16/2016	6/16/2016
	Laboratory Job Number:	82565	82565	82565	82565	82565	82565	82565
	Adult / Child / Duplicate:		Duplicate		Duplicate		Duplicate	
Parameters	Units		.,		.,		,	
Metals / NIOSH-7303((M)							
Aluminum	μg/m³	1.16	0.911	0.972	0.795	1.01	0.974	1.56
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	0.257	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	13	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND-0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	μg/m³	4.2 *	12.1 *	14.0 *	11.3 *	12.1 *	12.5 *	13.7 *
Chromium	μg/m³	114	0.354	ND<0.25	0.856 J	1.19	1.13	1.55
Cobalt	μg/m³).25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Iron	μg/m³			0.333	0.532 J		0.932 J	ND<0.25
Lead	μg/m³	25	NL	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	μg/m³	l	2.61 J	2	98	0.860	0.770	1.07
Manganese	μg/m³	63	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m³	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
Nickel	, 3	ND<0.25	ND<0.25	.25	NL	ND<0.25	ND<0.25	ND<0.25
Potassium		0.588 * J	ND<0.25	0.25	ND	ND<0.25	ND<0.25	ND<0.25
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Sodium	μg/m³	3.95	3.42	4.06 J	2.60 J	4.93	4.75	5.80
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	0.496 J	0.272 J	0.343	0.422	0.266 J	6.12 J	0.326

Notes:

Bold results exceed applicable limits for characteristic hazardous wastes ND=X= constituents(s) not detected at or above method detection limit
* = Trace level of target analyte was detected in the associated field blank and the result was adjusted by field blank concentration
J = analyte was detected. However, analyte concentration is an estimated value which is between the method detection limit (MDL) and the practical quantitation limit (PQL) μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

			N	Maywood, Los Angeles Cou	nty, California			
					<u></u>	Ev 0	Personal Privacy	
	Home:		Ex. 6 - Personal P	rivacy	Ex 8 Pressul Printy - Tard 6	Air	Air	Air
	Field Sample ID:	MWF-METALS-018	MWF-METALS-019	MWF-METALS-020	MWF-METALS-021	MWF-METALS-023	MWF-METALS-024	MWF-METALS-025
	Sample Date:	6/16/2016	6/16/2016	6/16/2016	6/17/2016	6/17/2016	6/17/2016	6/17/2016
	Laboratory Job							
	Number: Adult / Child /	82565	82565	82565	82565	82565	82565	82565
	Duplicate:	Duplicate		Duplicate				
Parameters	Units							
Metals / NIOSH-7303(M)			<u> </u>	<u> </u>			
Aluminum	μg/m ³	1.21	1.32 J	2.18 J	0.927	1.48	0.948	0.929
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	$\mu g/m^3$	1.3 *	11.4 *	5.66 *	7.70 *	6.86 *	5.26 *	4.58 *
Chromium	μg/m³	5	ND<0.25	0.880 J	0.323	ND<0.25	ND<0.25	0.66
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m ³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Iron	$\mu g/m^3$	25		1.46	1.10		0.841	ND<0.25
Lead	μg/m³	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	μg/m³	0	ND<0.2	ND ₇	76	ND<0.25	ND<0.25	ND<0.25
Manganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	1.32	ND<0.25	ND<0.25
Molybdenum	μg/m³	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
Nickel	/ 3	ND<0.25	ND<0.25	.25	N	ND<0.25	ND<0.25	ND<0.25
Potassium		ND<0.25	0.620 J	0.25	1.	2.07	1.16	0.870
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Sodium	μg/m³	6.12	5.67	5.42	4.38 *	7.72 *	5.74 *	4.93 *
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	0.304	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

			N	Fruitland Magnesiu Aaywood, Los Angeles Cou				
	Home:			Ex. 6 -	Personal I	Privacy	I	
	Field Sample ID:	MWF-METALS-026	MWF-METALS-027	MWF-METALS-028	MWF-METALS-029	MWF-METALS-030	MWF-METALS-044	MWF-METALS-045
	Sample Date:	6/17/2016	6/18/2016	6/18/2016	6/18/2016	6/18/2016	6/22/2016	6/22/2016
	Laboratory Job					0.4.5.5		
	Number: Adult / Child /	82565	82565	82565	82565	82565	82731	82731
	Duplicate:							
Parameters	Units							
Metals / NIOSH-7303	(M)		•					
Aluminum	μg/m ³	0.829	0.767 *	0.419 *	0.491 *	0.471 *	ND<0.25	0.437
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	(3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	$\mu g/m^3$	8.41 *	4.14 *	3.66 *	ND<0.25	ND<0.25	1.74 *	2.52 *
Chromium	$\mu g/m^3$	0.25	ND<0.25	ND<0.25	0.519 *	ND<0.25 *	0.272 *	0.375 *
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	$\mu g/m^3$	25		ND<0.7	3.85		ND<0.25	1.31
ead	$\mu g/m^3$	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	$\mu g/m^3$.25	ND<0.2	ND	12	0.366	0.592	0.970
Aanganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m ³	< 0.25	ND<0.25	N .5	N 5	ND<0.25	ND<0.25	ND<0.25
Vickel	4.3	ND<0.25	ND<0.25	.25	NA	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	0.683	0.25	ND-	ND<0.25	0.846	2.07
elenium	μg/m³	ND<0.25	ND<0.25	ND<0,25	ND<0,25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m ³	3.72 *	3.33 *	3.44 *	0.763 *	1.47 *	ND<0.25	2.58
hallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
/anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m ³	ND<0.25	ND<0.25	ND<0,25	ND<0,25	ND<0,25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

			Ŋ	Maywood, Los Angeles Cou				
	Ноте:	me: 3547 E 52 Ex. 6 - Personal Privacy						
	Field Sample ID:	MWF-METALS-048	MWF-METALS-049	MWF-METALS-050	MWF-METALS-051	MWF-METALS-052	MWF-METALS-053	MWF-METALS-056
	Sample Date:	6/22/2016	6/22/2016	6/22/2016	6/22/2016	6/22/2016 82731 Adult	6/22/2016 82731	6/23/2016
	Laboratory Job							
	Number: Adult / Child /	82731	82731	82731	82731			82746
	Duplicate:	Adult	Child	Adult	Child		Child	Adult
Parameters	Units							
Metals / NIOSH-7303(M)		•	•				•
Aluminum	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	0.495	ND<0.25	0.612
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	μg/m³	.22 *	2.49 *	2.05 *	1.07 *	3.36 *	2.13 *	2.29 *
Chromium	μg/m ³	7 *	0.338 *	ND<0.25 *	ND<0.25 *	0.296 *	0.306 *	0.905
Cobalt	$\mu g/m^3$	1.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Iron	$\mu g/m^3$	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
Lead	$\mu g/m^3$	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	$\mu g/m^3$	2	0.656	0.	10	0.556	0.440	0.657
Manganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m³	< 0.25	ND<0.25	N 25	N 5	ND<0.25	ND<0.25	ND<0.25
Nickel	/ 3	ND<0.25	ND<0.25	.25	NI NI	ND<0.25	ND<0.25	ND<0.25
Potassium		0.698	1.22	32	1.	1.37	1.02	ND<0.25
Selenium	$\mu g/m^3$	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Sodium	μg/m ³	ND<0.25	0.588	ND<0.25	ND<0.25	0.560	ND<0.25	3.19
Thallium	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	0.352	ND<0.25	ND<0.25	ND<0.25	ND<0.25	0.437
2110	P-0		1	L				L

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

			N	Maywood, Los Angeles Cou	nty, California			
	Home:		, Ex. 6 - Perso	onal Privacy		Ex. 6	- Personal I	Privacy
	Field Sample ID:	MWF-METALS-057	MWF-METALS-058	MWF-METALS-059	MWF-METALS-060	MWF-METALS-061	MWF-METALS-062	MWF-METALS-063
	Sample Date:	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016 82746	6/23/2016 82746
	Laboratory Job Number:	82746	82746	82746	82746	82746		
	Adult / Child / Duplicate:	Child	Adult	Child	Adult	Child	Adult	Child
Parameters	Units	Спиа	Adult	Cina	Adult	Cina	Adult	Ciniu
Metals / NIOSH-73030								
Aluminum	μg/m ³	0.351	0.459	0.619	0.573	0.335	0.294	ND<0.25
Antimony	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Bervllium	13	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	μg/m³	×.30 *	1.17 *	0.943 *	0.442 *	0.433 *	ND<0.25	0.506 *
Chromium	μg/m³	32	0,323	0.477	0.848	0.472	0.778	0.752
Cobalt	μg/m³	.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	μg/m³	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
ead	μg/m³	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	μg/m ³	0	0,502	0.	56	0.315	0.425	0,440
/Janganese	μg/m³	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Aolybdenum	μg/m³	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
Vickel	4.3	ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Sodium	μg/m³	1.83	1.30	2.19	0.920	ND<0.25	0.289	0.918
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

			N	Aaywood, Los Angeles Cou	inty, California			
	Home:	Ex. 6	6 - Personal	Privacy			onal Priv	
	Field Sample ID:	MWF-METALS-064	MWF-METALS-065	MWF-METALS-066	MWF-METALS-067	MWF-METALS-070	MWF-METALS-0/I	MWF-METALS-0/Z
	Sample Date:	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016
	Laboratory Job Number:	82746	82746	82746	82746	82746	82746	82746
	Adult / Child / Duplicate:	Adult	Child			Adult	Child	Adult
Parameters	Units							
Metals / NIOSH-7303((M)							
Muminum	μg/m³	0.362	0.329	ND<0.25	ND<0.25	0.278	0.400	0.348
ıntimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
rsenic	$\mu g/m^3$	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
arium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
eryllium	3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND-0.25	ND-0.25	ND<0.25
admium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
alcium	$\mu g/m^3$	1.56 *	0.849 *	1.18 *	4.10 *	3.20 *	2.18 *	1.18 *
hromium	μg/m³	28	0.915	0.409	0.548	0.458	0.411	0.407
obalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
opper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
on	μg/m³	25		ND<0.1	D<0.25		ND<0.25	ND<0.25
ead	$\mu g/m^3$	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
lagnesium	$\mu g/m^3$	8	0.336	0.7	26	0.462	1.62	0.457
Ianganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Iolybdenum	μg/m ³	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
ickel		ND<0.25	ND<0.25	.25	NA	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25
elenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m³	1.03	1.42	0.457	0.411	0.960	0.846	0.575
hallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	1.05	ND<0.25	ND<0.25	0.987

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

			M	Iaywood, Los Angeles Cou	nty, California			
	Home:		Personal		54	3541 F 52nd St Detached Ex. 6 - Pers	onal Privacy	
	Field Sample ID:	MWF-METALS-073	MWF-METALS-074	MWF-METALS-075	MWF-METALS-076	MWF-METALS-07/	MWF-METALS-078	MWF-METALS-0/9
	Sample Date:	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016
	Laboratory Job Number:	82746	82746	82746	82746	82746	82746	82746
	Adult / Child / Duplicate:	Child	Adult	Child	Adult	Child	Adult	Child
Parameters	Units							2
Metals / NIOSH-7303	M)							
Aluminum	$\mu g/m^3$	0.465	0.573	0.333	ND<0.25	0.345	0.383	0.372
Antimony	$\mu g/m^3$	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	/3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	$\mu g/m^3$.23 *	1.95 *	1.92 *	1.48 *	ND<0.25 *	0.965 *	2.75 *
Chromium	$\mu g/m^3$	56	0.442	0.481	0.47	0.417	0.475	0.483
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Iron	$\mu g/m^3$	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
Lead	$\mu g/m^3$	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	$\mu g/m^3$	1	0.710	0.7	82	1.25	0.716	0.854
Manganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m³	< 0.25	ND<0.25	N 5	1 5	ND<0.25	ND<0.25	ND<0.25
Nickel	4.3	ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25
Potassium		ND<0.25	ND<0.25	0.25	ND	ND<0.25	ND<0.25	ND<0.25
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Sodium	μg/m³	0.960	0.839	4.51	0.384	ND<0.25	0.646	1.84
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	0.619	16.3	1.02	6.16	0.306	ND<0.25	0.509

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

DRAFT - DO NOT REPRODUCE

Table 1 Draft Indoor Air Analytical Results Fruitland Magnesium Fire

			I	Maywood, Los Angeles Cou	ınty, California				
	Ex. 6 - Personal Privacy								
	Field Sample ID:	MWF-METALS-082	MWF-METALS-083	MWF-METALS-084	MWF-METALS-085	MWF-METALS-086	MWF-METALS-087	MWF-METALS-088	
	Sample Date:	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	
	Laboratory Job								
	Number: Adult / Child /	82851	82851	82851	82851	82851	82851	82851	
	Duplicate:	Adult	Child	Child	Adult	Adult	Child	Adult	
Parameters	Units	Adult	Cinq	Cinq	Adult	Aunt	Cinq	Aunt	
Metals / NIOSH-7303					<u> </u>			<u> </u>	
Aluminum	μg/m ³	2.77 *	1.83 *	2.08 *	1.58 *	2.85 *	2.44 *	0.273 *	
Antimony	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
Bervllium	1, 3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND-0.25	ND-0.25	ND<0.25	
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25	
Calcium	μg/m³	2.22 *	1.64 *	2.50 *	1.22 *	3.59 *	1.35 *	0.965 *	
Chromium	μg/m³	0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25	ND<0.25 *	
Cobalt	μg/m³	.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
Copper	μg/m ³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
ron	μg/m ³			ND<0.7	D<0.25		ND<0.25	ND<0.25	
ead	$\mu g/m^3$	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25	
Magnesium	μg/m³	*	ND<0.23	0.2	0.25 *	0.349 *	0.191 *	ND<0.25 *	
Manganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25	
Molybdenum	μg/m ³	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25	
Vickel	4 3	ND<0.25	ND<0.25	.25	N	ND<0.25	ND<0.25	ND<0.25	
otassium		ND<0.25	ND<0.25	0.25 *	ND-	ND<0.25	ND<0.25	ND<0.25	
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
odium	μg/m³	20.3	17.6	18.0	14.9	18.7	16.0	2.02	
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE DRAFT - DO NOT REPRODUCE

Table 1 Draft Indoor Air Analytical Results Fruitland Magnesium Fire

			Ŋ	Fruitland Magnesi Maywood, Los Angeles Cou				
	Home			Ex. 6 - I	Personal	Privacy	1	
	Field Sample ID:	MWF-METALS-089	MWF-METALS-090	MWF-METALS-091	MWF-METALS-092	MWF-METALS-093	MWF-METALS-094	MWF-METALS-095
	Sample Date:	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016
	Laboratory Job Number:	82851	82851	82851	82851	82851	82851	82851
	Adult / Child /	02031	02031	02031	62631	02031	02031	02031
	Duplicate:	Child	Child	AdultDuplicate	Adult	Adult	Child	
Parameters	Units							
Metals / NIOSH-7303	(M)					_		
Aluminum	μg/m³	ND<0.25 *	0.328 *	0.456 *	0.284 *	0.379 *	ND<0.25 *	0.359 *
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	- (-3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND-0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	$\mu g/m^3$.18 *	4.23 *	1.86 J	1.39 *	2.05 *	0.443 *	0.469 *
Chromium	μg/m³	0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25	ND<0.25 *
Cobalt	μg/m³	.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	μg/m³	25		0.499	0.522 J		ND<0.25	0.558 J
ead	$\mu g/m^3$	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	μg/m³	25 *	ND<0.23	0.4	58 J	0.561 J	ND<0.25	0.487 *
Aanganese	$\mu g/m^3$	0.25	ND<0.25	NΓ	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m ³	< 0.25	ND<0.25	N 5	1 5	ND<0.25	ND<0.25	ND<0.25
Vickel	4.3	ND<0.25	ND<0.25	.25	NA	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25 *	7 Ј	ND<	ND<0.25	ND<0.25	ND<0.25
elenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m ³	ND<0.25	1.37	3.13 J	1.90	2.98	0.720	2.56
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
/anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0,25	ND<0.25	ND<0.25	ND<0,25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

			N	Aaywood, Los Angeles Cou				
		Ev 6 De	roopal Brit			Ex. 6 - Per	sonal Privacy	
		EX. 0 - PE	ersonal Priv	/acy	0.607 * ND<0.25 ND<0.	Air	Air	Air
	Field Sample ID:	MWF-METALS-096	MWF-METALS-097	MWF-METALS-098	MWF-METALS-099	MWF-METALS-100	MWF-METALS-101	MWF-METALS-102
	Sample Date:	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016
	Laboratory Job Number:		0000	0000	0.00.	0000	0.00	000
	Adult / Child /	82851	82851	82851	82851	82851	82851	82851
	Duplicate:	Child	Adult	Child	Child	Adult	Adult	Child
Parameters	Units							
Aetals / NIOSH-7303	(M)							
Aluminum	μg/m ³	ND<0.25 *	0.276 *	0.285 *	0.607 *	ND<0.25 *	1.55 *	0.311 *
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
eryllium	3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND-0.25	ND-0.25	ND<0.25
admium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
alcium	$\mu g/m^3$	602 *	0.966 *	ND<0.25 *	1.01 *	0.667 *	1.75 *	0.366 *
hromium	μg/m³	0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25	ND<0.25 *
obalt	$\mu g/m^3$	1.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
opper	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
on	μg/m³	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
ead	$\mu g/m^3$	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	$\mu g/m^3$	*	0.406	0.3	\$2 *	0.265 *	0.596 *	ND<0.25 *
fanganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Iolybdenum	μg/m³	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
lickel	/ 3	ND<0.25	ND<0.25	.25	N	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	ND	ND<0.25	ND<0.25	ND<0.25
elenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m³	1.45	2.70	1.45	2.97	0.595	ND<0.25	0.762
hallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
⁷ anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

DRAFT - DO NOT REPRODUCE DRAFT - DO NOT REPRODUCE

Table 1 **Draft Indoor Air Analytical Results** Fruitland Magnesium Fire

			N	Maywood, Los Angeles Cou	nty, California			
	Home:		L	Ex. 6 - 1	Personal	Privacy		
	Field Sample ID:	MWF-METALS-103	MWF-METALS-104	MWF-METALS-105	MWF-METALS-106	MWF-METALS-109	MWF-METALS-110	MWF-METALS-111
	Sample Date:	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016
	Laboratory Job Number:	82851	82851	82851	82851	82851	82851	82851
	Adult / Child /	82831	82831	82831	82831	82831	82831	82831
	Duplicate:	ChildDuplicate	Adult	Child	Adult	Adult	ChildDuplicate	Child
Parameters	Units	•					Î	
Metals / NIOSH-7303((M)							
Aluminum	μg/m³	ND<0.25 *	ND<0.25 *	0.406 J	ND<0.25 *	0.402 *	0.360 *	0.362 *
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	4.3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	$\mu g/m^3$	<0.25 *	0.979 *	0.354 *	2.93 *	1.26 J	1.58 J	2.44 J
Chromium	$\mu g/m^3$	0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25	ND<0.25 *
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	μg/m³	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
ead	$\mu g/m^3$	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
/agnesium	$\mu g/m^3$	*	ND<0.23	ND<).25 *	ND<0.25 *	ND<0.25	0.554 J
/Janganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
/olybdenum	μg/m ³	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
Nickel		AD<0.25	ND<0.25	.25	NA	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25 J
elenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m³	1.61	0.814	1.22	ND<0.25	0.807 J	1.92 J	6.57
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
linc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

	Home:	Ex. 6	- Personal	Privacy		Ex. 6 - Pers	onal Privac	/acy	
	Field Sample ID:	MWF-METALS-112	MWF-METALS-113	MWF-METALS-114	MWF-METALS-115	MWF-METALS-122	MWF-METALS-123	MWF-METALS-124	
	Sample Date:	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/25/2016	6/25/2016	6/25/2016	
	Laboratory Job Number:	82851	82851	82851	82851	82856 Adult	82856	82856	
	Adult / Child / Duplicate:	Child	Adult	AdultDuplicate	ChildDuplicate		Adult	Child	
Parameters	Units								
Metals / NIOSH-7303	' 					1			
Aluminum	μg/m ³	0.275 J	ND<0.25 *	ND<0.25 *	0.471 J	ND<0.25	ND<0.25	0.279	
Antimony	μg/m ³	ND<0.25							
Arsenic	μg/m³	ND<0.25							
Barium	μg/m³	ND<0.25							
eryllium	/3	ND<0.25							
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25	
alcium	μg/m³	2.01 J	1.33 J	0.893 J	0.760 J	ND<0.25	ND<0.25	1.59 *	
hromium	μg/m³	0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	0.383	0.263	0.336	
obalt	μg/m³).25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
Copper	μg/m³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
ron	μg/m³	25		ND<0.7	(D<0.25		ND<0.25	ND<0.25	
ead	μg/m³	25	IND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25	
/agnesium	μg/m³	*	0.314	0.3	<u>70 *</u>	0.481	0.352	0,325	
/anganese	μg/m³	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25	
/olybdenum	μg/m³	< 0.25	ND<0.25	N .5	N 5	ND<0.25	ND<0.25	ND<0.25	
lickel	4.3	ND<0.25	ND<0.25	.25	NA	ND<0.25	ND<0.25	ND<0.25	
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25	
elenium	μg/m³	ND<0.25							
odium	μg/m³	6.05 J	4.89	4.22	0.807 J	ND<0.25	ND<0.25	ND<0.25	
hallium	μg/m³	ND<0.25							
anadium	μg/m³	ND<0.25							
Zinc	μg/m³	ND<0.25							

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

			N	Maywood, Los Angeles Cou	inty, California			
	Home:		J	Ex. 6 -	Personal	Privacy	J	
	Field Sample ID:	MWF-METALS-125	MWF-METALS-126	MWF-METALS-127	MWF-METALS-128	MWF-METALS-129	MWF-METALS-130	MWF-METALS-131
	Sample Date:	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016
	Laboratory Job							
	Number: Adult / Child /	82856	82856	82856	82856	82856	82856	82856
	Duplicate:	Child	Child	Adult	Child	AdultDuplicate	ChildDuplicate	Child
Parameters	Units							2
Metals / NIOSH-7303(M)					<u> </u>	<u> </u>	
Aluminum	μg/m³	1.67	ND<0.25	0.376	0.672	ND<0.25	ND<0.25	ND<0.25
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	/3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	μg/m³	D<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Chromium	μg/m³	365	0.367	0.391	0.342	0.342	0.362	0.311
Cobalt	μg/m ³	1.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m ³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	μg/m³	25		ND<0.7	D<0.25		ND<0.25	0.423
ead	μg/m³	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
/agnesium	μg/m ³	8	0.623	0.5	03	0.498	0.468	0.613
1anganese	μg/m ³	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m ³	<0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
Vickel	/ 3	ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25
elenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m ³	1.17	ND<0.25	0.752	0.576	ND<0.25	ND<0.25	ND<0.25
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
/anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0,25	ND<0,25	ND<0.25	ND<0.25	ND<0,25	ND<0,25	ND<0,25
ALIC	µg/m	1.5 0.25	1.2 -0.23	1.2 -0.23	1.2 -0.23	1.2 -0.25	1.2 -0.23	1.5 -0.23

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

DRAFT - DO NOT REPRODUCE Table 1 DRAFT - DO NOT REPRODUCE

Draft Indoor Air Analytical Results Fruitland Magnesium Fire

			I	Maywood, Los Angeles Cou	ınty, California			
	Home:		A	Ex. 6 - F	Personal	Privacy		1
	Field Sample ID:	MWF-METALS-132	MWF-METALS-133	MWF-METALS-134	MWF-METALS-135	MWF-METALS-136	MWF-METALS-137	MWF-METALS-138
	Sample Date:	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016
	Laboratory Job Number:	82856	82856	82856	82856	82856	82856	82856
	Adult / Child /							
	Duplicate:	Adult	Child	ChildDuplicate	Child	Adult	Adult	Adult
Parameters	Units							
Metals / NIOSH-7303	` ` ` ` `	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Aluminum	μg/m ³	ND<0.25 ND<0.25	ND<0.25 ND<0.25	ND<0.25 ND<0.25	ND<0.25 ND<0.25		ND<0.25 ND<0.25	ND<0.25 ND<0.25
Antimony	μg/m ³					ND<0.25		
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	111111111111111111111111111111111111111	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND<0.25	ND-0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	μg/m³	Q<0.25	ND<0.25	1.54 *	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Chromium	$\mu g/m^3$	56	0.404	0.31	0.361	0.258	ND<0.25	0.368
Cobalt	$\mu g/m^3$).25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	$\mu g/m^3$	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
Lead	μg/m³	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	μg/m ³	8	0.566	0.	02	0.478	0.610	0.596
Manganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m³	< 0.25	ND<0.25	N .5	N 5	ND<0.25	ND<0.25	ND<0.25
Nickel	, 3	ND<0,25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25
Selenium	μg/m³	ND<0,25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0,25
odium	μg/m³	ND<0.25	1.52	3.38	3.72	2.39	2.32	ND<0.25
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
		ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND~0.23	ND~0.23	ND~0.23	ND~0.23	ND~0.23	ND~0.23	ND~0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

			N	Maywood, Los Angeles Cou	ınty, California			
	Home:			Ex. 6	i 6 - Personal Pri	vacy		
	Field Sample ID:	MWF-METALS-139	MWF-METALS-140	MWF-METALS-141	MWF-METALS-142	MWF-METALS-143	MWF-METALS-144	MWF-METALS-145
	Sample Date:	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/26/2016	6/26/2016
	Laboratory Job							
	Number:	82856	82856	82856	82856	82856	82856	82856
	Adult / Child / Duplicate:	Child	Child	Adult	AdultDuplicate	Adult	Adult	Child
Parameters	Units	Cinu	Cinu	Aduit	AduntDuphcate	Aduit	Adult	Ciliu
Metals / NIOSH-7303								
Aluminum	μg/m ³	0.890	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Antimony	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0,25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	-/_3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND-0.25	ND<0.25
Cadmium		ND<0.25	The second second	ND<0.25	ND<0.25			ND<0.25
Calcium	$\mu g/m^3$	Q<0.25	ND<0.25	0.424 *	0.301 *	1.71 *	1.24 *	ND<0.25
Chromium	μg/m³	182	0.331	0.315	0.43	0.318	0.298	ND<0.25
Cobalt	μg/m³	.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Iron	μg/m³	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
Lead	μg/m³	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	$\mu g/m^3$	5	0.730	0.	83	0.658	0.608	0.319
Manganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m³	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
Nickel	4 3	ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25
Potassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Sodium	μg/m³	4.06	0.700	6.90	5.31	4.79	ND<0.25	1.72
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

		N	Maywood, Los Angeles Cou	ınty, California			
Home:			Ex.	6 - Personal Pri	vacy		
Field Sample ID:	MWF-METALS-150	MWF-METALS-151	MWF-METALS-152	MWF-METALS-153	MWF-METALS-154	MWF-METALS-155	MWF-METALS-156D
Sample Date:	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016
Number:	82949	82949	82949	82949	82949	82949	82949
Adult / Child / Duplicate:	Child	Adult	ChildDuplicate	AdultDuplicate	Adult	Child	AdultDuplicate
Units							
M)							_
							1.29
	·						ND<0.25
μg/m³							ND<0.25
μg/m³							ND<0.25
111111111111111111111111111111111111111	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
	ND<0.25		ND<0.25	ND<0.25			ND<0.25
μg/m³	8.82	5.53	7.11	6.92	2.10	3.97	3.52
μg/m ³	0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
μg/m³	.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
μg/m ³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
μg/m³	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25
		1.56	1	69	0.596	1.50	0.818
	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
3	ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25
	ND<0.25	ND<0.25	0.25	0.	ND<0.25	ND<0.25	ND<0.25
ug/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
	12.8	9.51	9.18	12.1	3.50	5.07	5.40
	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
	0.332	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
							ND<0.25
	Field Sample ID: Sample Date: Laboratory Job Number: Adult / Child / Duplicate: Units M) µg/m³ µg/m³	Field Sample ID: Sample Date: Child Sample Date: Laboratory Job Number: Adult / Child / Duplicate: Units M) μg/m³ 1.22 μg/m³ ND<0.25 μg/m³ ND<0.25 μg/m³ ND<0.25 μg/m³ 2.25 μg/m³ 3.30 μg/m³ 3.40 μg/m³ 4.0.25 μg/m³ 1.22 μg/m³ 1.22 μg/m³ 2.25 μg/m³ 2.25 μg/m³ 2.25 μg/m³ 3.30 μg/m³ 3.30 μg/m³ 3.30 μg/m³ 1.28 μg/m³ 1.28 μg/m³ 1.28 μg/m³ 1.28 μg/m³ 0.332	Home: Field Sample ID: MWF-METALS-150 MWF-METALS-151 Sample Date: 7/1/2016 7/1/2016 Laboratory Job Number: 82949 82949 Adult / Child / Duplicate: Child Adult Units	Home:	Field Sample ID: MWF-METALS-150 MWF-METALS-151 MWF-METALS-152 MWF-METALS-153 T/1/2016 T/1/2016	Home: Ex. 6 - Personal Privacy	Home: Ex. 6 - Personal Privacy

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

			ľ	Maywood, Los Angeles Cou	ınty, California			
	Home:	Ex	. 6 - Pers	onal Priv	асу	Ex. 6 - F	Personal P	rivacy
	Field Sample ID:	MWF-METALS-157D	MWF-METALS-158	MWF-METALS-159	MWF-METALS-160	MWF-METALS-161	MWF-METALS-162	MWF-METALS-163
	Sample Date:	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016
	Laboratory Job Number:	82949	82951	82951	82951	82951	82951	82951
	Adult / Child / Duplicate:	ChildDuplicate	Child	Adult	ChildDuplicate	AdultDuplicate	Adult	Child
Parameters	Units	Спиинирисан	Cinu	Aunt	Спидирисаце	AdditDupiteate	Adult	Cina
Metals / NIOSH-7303					<u> </u>			
Aluminum	$\mu g/m^3$	0.465	1.07	1.16	ND<0.25	0.283	0.403	0.556
Antimony	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	43	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	μg/m³	5.38	4.20	2.98	3.43	2.62	4.31	3.96
Chromium	μg/m³	0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cobalt	μg/m³	1.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	μg/m ³	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
ead	μg/m³	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	μg/m³	9	1.13	0.9	93	1.11	1.63	1.58
Manganese	μg/m³	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m ³	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
Nickel	, 3	ND<0.25	ND<0.25	.25	N	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Sodium	μg/m³	6.07	8.78	8.63	8.31	7.14	12.1	9.59
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

DRAFT - DO NOT REPRODUCE DRAFT - DO NOT REPRODUCE Table 1

Draft Indoor Air Analytical Results

			,	Fruitland Magnesiu Maywood, Los Angeles Cou				
								-
	Home:		E	(. 6 - Pe	ersona	l Privad	cy	
	Field Sample ID:	MWF-METALS-164	MWF-METALS-165	MWF-METALS-166	MWF-METALS-167	MWF-METALS-168D	MWF-METALS-169D	MWF-METALS-170
	Sample Date:	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016
	Laboratory Job Number:	02051	02051	02051	02051	02051	02051	02054
	Adult / Child /	82951	82951	82951	82951	82951	82951	82954
	Duplicate:	AdultDuplicate	ChildDuplicate	Adult	Child	AdultDuplicate	ChildDuplicate	Adult
Parameters	Units	•	·			•	·	
Metals / NIOSH-7303	(M)							
Aluminum	μg/m³	0.732	0.509	3.07	3.14	2.68	2.47	0.714
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	4.3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND<0.25	ND-0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	μg/m³	5.74	5.59	39.8	34.9	27.5	27.5	5.42
Chromium	μg/m³	0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cobalt	μg/m³	.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m ³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Iron	μg/m³	25		ND<0.7	D<0.25		ND<0.25	0.822
Lead	$\mu g/m^3$	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	$\mu g/m^3$		1.84	3	80	2.81	2.84	0.792
Manganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m ³	< 0.25	ND<0.25	N .5	N 5	ND<0.25	ND<0.25	ND<0.25
Nickel	, 3	ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25
Potassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Sodium	μg/m ³	11.6	12.2	8.46	7.49	8.57	9.41	3.62
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	0,254	ND<0.25	ND<0.25	0.484

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte cot $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

Table 1 **Draft Indoor Air Analytical Results** Fruitland Magnesium Fire Maywood, Los Angeles County, California

DRAFT - DO NOT REPRODUCE

			<u> </u>	viaywood, Los Angeles Col	I	<u> </u>		T
	Home:		J		l 6 - Personal Priv	/acy		I
	Field Sample ID:	MWF-METALS-171	MWF-METALS-172	MWF-METALS-173	MWF-METALS-174D	MWF-METALS-175D	MWF-METALS-176	MWF-METALS-177
	Sample Date:	7/1/2016	7/1/2016	7/1/2016	7/2/2016	7/2/2016	7/2/2016	7/2/2016
	Laboratory Job Number:	82954	82954	82954	82955	82955	82955	82955
	Adult / Child / Duplicate:	Child	Child	Adult	ChildDuplicate	AdultDuplicate	Adult	Child
Parameters	Units	Ciniu	Ciniu	Aunt	Спиририсац	Апиноприсан	Auun	Ciniu
Metals / NIOSH-7303(<u> </u>					
Aluminum	μg/m ³	0.349	0.608	0.799	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Antimony	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	$\mu g/m^3$	ND<0.25	ND<0.25	ND<0.25	0.510	ND<0.25	ND<0.25	ND<0.25
Beryllium	3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	$\mu g/m^3$	5.24	6.67	7.33	ND<0.25	ND<0.25	0.467	1.04
Chromium	$\mu g/m^3$	0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Iron	μg/m³			0.917	D<0.25		ND<0.25	ND<0.25
Lead	$\mu g/m^3$	25	U.	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	$\mu g/m^3$		1.32	1.	56	0.642	0.860	0.814
Manganese	$\mu g/m^3$	0.25	ND<0.25	ND	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m ³	<0.25	ND<0.25	N 5	N 5	ND<0.25	ND<0.25	ND<0.25
Nickel	3	D<0.25	ND<0.25	25	NI	ND<0.25	ND<0.25	ND<0.25
Potassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Sodium	$\mu g/m^3$	3.87	7.23	6.88	2.46	2.90	3.78	4.10
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	ND<0.25	0.313	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND=X = constituents(s) not detected at or abe * = Trace level of target analyte was detected i J = analyte was detected. However, analyte cot $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

			N	Maywood, Los Angeles Cou	nty, California			
	Home:			Ex	k. 6 - Personal Pri	vacy		
	Field Sample ID:	MWF-METALS-178	MWF-METALS-179	MWF-METALS-190	MWF-METALS-191	MWF-METALS-192D	MWF-METALS-193D	MWF-METALS-202
	Sample Date:	7/2/2016	7/2/2016	7/2/2016	7/2/2016	7/2/2016	7/2/2016	6/27/2016
	Laboratory Job							
	Number: Adult / Child /	82955	82955	82955	82955	82955	82955	82873
	Duplicate:	Adult	Child	Adult	Child	AdultDuplicate	ChildDuplicate	Adult
Parameters	Units							
Metals / NIOSH-7303(M)		•	•		•	•	
Aluminum	μg/m³	ND<0.25	0.414	ND<0.25	ND<0.25	ND<0.25	ND<0.25	0.376 *
Antimony	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND-0.25	ND-0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	$\mu g/m^3$	846	1.65	0.611	0.762	ND<0.25	0.714	1.90 *
Chromium	μg/m³	0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m ³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	$\mu g/m^3$	1 25		ND<0.7	D<0.25		ND<0.25	0.460
ead	$\mu g/m^3$	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	$\mu g/m^3$		0.784	0.0	94	0,536	0.535	0.523 *
Manganese	$\mu g/m^3$	0.25	ND<0.25	NΓ	25	ND<0.25	ND<0.25	ND<0.25
Aolybdenum	μg/m ³	<0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
Nickel	- 3	D<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	ND	ND<0.25	ND<0.25	ND<0.25
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Sodium	μg/m ³	2.39	3.51	2.68	2.52	2.02	2.46	2.94 *
Thallium	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
/anadium	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	ND<0,25	ND<0,25	ND<0.25	ND<0.25	ND<0,25	ND<0.25
iii C	F F F F F F F F F F F F F F F F F F F		1	l	l	1	1	

Notes: Bold results exceed applicable limits for chara ND=X = constituents(s) not detected at or abe * = Trace level of target analyte was detected i J = analyte was detected. However, analyte cot $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

			N	Aaywood, Los Angeles Cou	nty, California	T	T	-
	Home:	Ex. 6 - Perso	onal Privacy					
	Field Sample ID:	MWF-METALS-203	MWF-METALS-400	MWF-METALS-213	MWF-METALS-214	MWF-METALS-217	MWF-METALS-218	MWF-METALS-219
	Sample Date:	6/27/2016	7/2/2016	7/3/2016	7/3/2016	7/5/2016	7/5/2016	7/5/2016
	Laboratory Job Number:	82873	82955	83087	83087	83088	83088	83088
	Adult / Child / Duplicate:	Child	Adult					
Parameters	Units							
Metals / NIOSH-7303(M)					_	•	
Aluminum	μg/m³	ND<0.25 *	ND<0.25	ND<0.25	ND<0.25	ND<0.25	0.343	ND<0.25
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
eryllium	3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	$\mu g/m^3$	<0.25 *	ND<0.25	ND<0.25	ND<0.25	3.91	1.76	3.06
hromium	μg/m³	0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	μg/m³	25		ND<0.1	D<0.25		ND<0.25	ND<0.25
ead	μg/m³	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25
/agnesium	μg/m³	25 *	0.657	ND:	0.25	ND<0.25	ND<0.25	0,325
Manganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Aolybdenum	μg/m ³	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
lickel	, 3	ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	ND-	1.18	0.607	0.601
elenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m³	ND<0.25 *	2.69	1.15	ND<0.25	1.57	2.51	1.16
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
/anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

			N	Maywood, Los Angeles Cou				
	Home:							
	Field Sample ID:	MWF-METALS-220	MWF-METALS-221	MWF-METALS-222	MWF-METALS-223	MWF-METALS-224	MWF-METALS-225	MWF-METALS-226
	Sample Date:	7/5/2016	7/5/2016	7/5/2016	7/5/2016	7/5/2016	7/5/2016	7/5/2016
	Laboratory Job							
	Number:	83088	83088	83088	83088	83088	83088	83088
	Adult / Child / Duplicate:							
Parameters	Units							
Metals / NIOSH-7303								
Aluminum	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Antimony	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	-/_3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND-0.25	ND<0.25
Cadmium	The second secon	ND<0.25	Marie Contraction of the Contrac	ND<0.25	ND<0.25			ND<0.25
Calcium	μg/m³	2.961	0.807	0.949	0.404	ND<0.25	0.306	ND<0.25
Chromium	μg/m ³	0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cobalt	μg/m ³	1.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m ³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	μg/m ³			ND<0.	(D<0.25		ND<0.25	ND<0.25
ead	$\mu g/m^3$	25	Nb	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	μg/m ³	.25	ND<0.2	ND:	88	ND<0.25	ND<0.25	ND<0.25
Aanganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m ³	<0.25	ND<0.25	N 25	1 5	ND<0.25	ND<0.25	ND<0.25
Nickel	/ 3	AD<0.25	ND<0.25	.25	NI NI	ND<0.25	ND<0.25	ND<0.25
otassium		0.565	ND<0.25	45	0.	ND<0.25	0.265	ND<0.25
Selenium	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m ³	1.00	1.05	1.53	0.717	0.524	0.795	0.469
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0,25	ND<0,25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Trace level of target analyte was detected i J = analyte was detected. However, analyte co $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

DRAFT - DO NOT REPRODUCE Table 1 DRAFT - DO NOT REPRODUCE

Draft Indoor Air Analytical Results Fruitland Magnesium Fire Maywood, Los Angeles County, California

Field Sample ID:

Home

Ex. 6 - Personal Privacy

MWF-METALS-401 7/2/2016

		rieid Sampie ID:	MWF-METALS-401	
		Sample Date:	7/2/2016]
		Laboratory Job		1
		Number:	82955	1
		Adult / Child /		
	_	Duplicate:	Child	4
	Parameters	Units		4
	Metals / NIOSH-7303			
	Aluminum	μg/m³	ND<0.25	1
	Antimony	$\mu g/m^3$	ND<0.25	
	Arsenic	μg/m³	ND<0.25	
	Barium	μg/m³	0.498	1
	D. Winn	μg/m³	ND<0.25	
		μg/m³	ND<0.25	
	Calcium	μg/m³	ND<0.25	
	Chromium	μg/n	ND<0,25	
	Cobalt		ND<0.25	
		μg/	ND<0.25	
	Copper	μ		
			D<0.25	
			<0.25	
	Ma	A Section	82	
	Manga	g/m^3	25	
	Molybdo	ig/m ³	1 5	
7 🔛	Nickel	μg/m ³	NA	
	Potassium	μg/m ³	ND	
	Selenium	μg/m³	ND<0.25	Τ
	Sodium	μg/m³	2.48	1
	Thallium	μg/m³	ND<0.25	1
			ND<0.25	1
	Vanadium	μg/m ³	ND<0.25	-
	Zinc	μg/m³	ND<0.25	_

Notes: Bold results exceed applicable limits for chara ND=X = constituents(s) not detected at or abe * = Trace level of target analyte was detected i J = analyte was detected. However, analyte cot $\mu g/kg$ = microgram per kilogram $\mu g/m^3$ = microgram per cubic meter